
Table of Contents
Preface

Introduction to React

How much JavaScript you need to know to use
React?

Why should you learn React?

How to install React

React Components

Introduction to JSX

Using JSX to compose UI

The difference between JSX and HTML

Embedding JavaScript in JSX

Managing state in React

Component Props in React

Data flow in a React application

Handling user events in React

Lifecycle events in a React component

Where to go from here

1

Preface
The React Beginner's Handbook follows the 80/20 rule:
learn in 20% of the time the 80% of a topic.

I find this approach gives a well-rounded overview.

This book does not try to cover everything under the
sun related to React.

It focuses on the core of the language, trying to
simplify the more complex topics.

2

Introduction to React
The goal of this handbook is to provide a starter guide
to learning React.

At the end of the book, you'll have a basic
understanding of:

What is React and why it's so popular
How to install React
The concepts of React: Components
The concepts of React: State
The concepts of React: Props
Handling user events in React
Lifecycle events in a React component

Those topics will be the base upon which you will work
on in other more advanced React courses.

This book is especially oriented at JavaScript
programmers new to React.

React is a JavaScript library that aims to simplify
development of visual interfaces.

Developed at Facebook and released to the world in
2013, it drives some of the most widely used apps,
powering Facebook and Instagram among countless
other applications.

Its primary goal is to make it easy to reason about an
interface and its state at any point in time, by dividing
the UI into a collection of components.

3
You will find some initial difficulties learning React, but
once it "clicks", I guarantee it's going to be one of the
best experiences you will have, because React makes
many things easier than ever, and its ecosystem is
filled with great libraries and tools.

React in itself has a very small API, and you basically
need to understand 4 concepts to get started:

Components
JSX
State
Props

We'll explore all of these in this book, and we'll leave
the more advanced concepts to other learning
resources.

4

How much JavaScript
you need to know to use
React?
Before jumping straight into React, you should have a
good understanding of some core JavaScript concepts.

You don't have to be an expert, but I think you need a
good overview of:

Variables
Arrow functions
Work with objects and arrays using Rest and
Spread
Object and array destructuring
Template literals
Classes
Callbacks
Promises

Async/Await
ES Modules

If those terms sounds unfamiliar, I provided you some
links to find out more about those subjects.

5

Why should you learn
React?
I highly recommend any Web developer to have at
least a basic understanding of React.

That's because of a few reasons.

1. React is very popular. As a developer, it's quite
likely that you're going to work on a React project
in the future. Perhaps an existing project, or
maybe your team will want you to work on a brand
new app based on React.

2. A lot of tooling today is built using React at the
core. Popular frameworks and tools like Next.js,
Gatsby and many others use React under the
hood.

3. As a frontend engineer, React is probably going to
come up in a job interview.

Those are all good reasons, but one of the reasons I
want you to learn React is that it's great.

It promotes several good development practices,
including code reusability and components-driven
development. It is fast, it is lightweight and the way it

makes you think about the data flow in your application
perfectly suits a lot of common scenarios.

6

How to install React
There are a few different ways to install React.

To start with, I highly recommend one approach, and
that's using the officially recommended tool called
create-react-app .

create-react-app is a command line application, aimed at
getting you up to speed with React in no time.

You start by using npx , which is an easy way to
download and execute Node.js commands without
installing them.

npx comes with npm (since version 5.2) and if you don't
have npm installed already, do it now from
https://nodejs.org (npm is installed with Node).

If you are unsure which version of npm you have, run
npm -v to check if you need to update.

When you run npx create-react-app <app-name> , npx is going
to download the most recent create react-app release, run
it, and then remove it from your system. This is great

because you will never have an

7
outdated version on your system, and every time you run it, you're getting
the latest and greatest code available.

Let's start then:

npx create-react-app todolist

This is when it
finished running:

8
create-react-app created a files structure in the folder you

told (todolist in this case), and initialized a Git repository.

It also added a few commands in the package.json file:

so you can immediately start the app by going into the
newly created application folder and run npm start .

9

By default this command launches the app on your

local port 3000, and it opens your browser showing
you the welcome screen:

Now you're ready to work on this application!

10

React Components
You just saw how to create your first React application.

This application comes with a series of files that do various things, mostly
related to configuration, but there's one file that stands out: App.js .

App.js is the first React Component you meet.

Its code is this:

import React from 'react'
import logo from './logo.svg'
import './App.css'

function App() {
return (
<div className="App">
<header className="App-header">

<img src={logo} className="App-logo" alt="lo <p>
Edit <code>src/App.js</code> and save to r </p>
<a
className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"

>
Learn React

</header>
</div>
)
}

export default App

11

An application built using React, or one of the other
popular frontend frameworks like Vue and Svelte for
example, is built using dozens of components.

But let's start by analyzing this first component. I'm
going to simplify this component code like this:

import React from 'react'
import logo from './logo.svg'
import './App.css'

function App() {
return /* something */
}

export default App

You can see a few things here. We import some things,
and we export a function called App .

The things we import in this case are a JavaScript
library (the react npm package), an SVG image, and a
CSS file.

create-react-app is set up in a way that allows us to
import images and CSS to use in our JavaScript,
but this is not something you need to care now.

What you need to care about is the concept of a
component

App is a function that in the original example returns
something that at first sight looks quite strange.

It looks like HTML but it has some JavaScript
embedded into it.

12
That is JSX, a special language we use to build a
component's output. We'll talk more about JSX in the
next section.

In addition to defining some JSX to return, a
component has several other characteristics.

A component can have its own state, which means it
encapsulates some variables that other components
can't access unless this component exposes this state
to the rest of the application.

A component can also receive data from other
components. In this case we talk about props.

Don't worry, we're going to look in details at all those
terms (JSX, State and Props) soon.

13

Introduction to JSX
We can't talk about React without first explaining JSX.

You met your first React component, the App component defined in the
default application built by create-react-app .

Its code was this:

import React from 'react'
import logo from './logo.svg'
import './App.css'

function App() {
return (
<div className="App">
<header className="App-header">
<img src={logo} className="App-logo" alt="lo <p>
Edit <code>src/App.js</code> and save to r </p>
<a
className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"

>
Learn React

</header>

</div>
)
}

export default App

14

We previously ignored everything that was inside the
return statement, and in this section we're going to talk
about it.

We call JSX everything inside wrapped inside the
parentheses returned by the component:

<div className="App">
<header className="App-header">
<img src={logo} className="App-logo" alt="logo" <p>
Edit <code>src/App.js</code> and save to reloa </p>
<a
className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"
>
Learn React

</header>
</div>

This looks like HTML, but it's not really HTML. It's a
little different.

And it's a bit strange to have this code inside a
JavaScript file. This does not look like JavaScript at all!

Under the hood, React will process the JSX and it will
transform it into JavaScript that the browser will be
able to interpret.

So we're writing JSX, but in the end there's a

translation step that makes it digestible to a JavaScript
interpreter.

15
React gives us this interface for one reason: it's easier
to build UI interfaces using JSX.

Once you'll get more familiar with it, of course.

In the next section we'll talk about how JSX lets you
easily compose a UI, then we'll look at the differences
with "normal HTML" that you need to know.

16

Using JSX to compose
UI
As introduced in the last section, one of the main
benefits of JSX is to make it very easy to build a UI.

In particular, in a React component you can import
other React components, and you can embed them
and display them.

A React component is usually created in its own file,
because that's how we can easily reuse it (by importing
it) in other components.

But a React component can also be created in the
same file of another component, if you plan to only use
it in that component. There's no "rule" here, you can do
what feels best to you.

I generally use separate files when the number of lines
in a file grows too much.

To keep things simple let's create a component in the
same App.js file.

We're going to create a WelcomeMessage component:

function WelcomeMessage() {
return <p>Welcome!</p>
}

See? It's a simple function that returns a line of JSX
that represents a pHTML element.

We're going to add it to the App.js file.

17
Now inside the App component JSX we can add
<WelcomeMessage /> to show this component in the user
interface:

import React from 'react'

import logo from './logo.svg'
import './App.css'

function WelcomeMessage() {
return <p>Welcome!</p>
}

function App() {
return (
<div className="App">
<header className="App-header">
<img src={logo} className="App-logo" alt="lo <p>
Edit <code>src/App.js</code> and save to r </p>
<WelcomeMessage />
<a
className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"
>
Learn React

</header>
</div>
)
}

export default App

And here's the result. Can you see the "Welcome!"
message in the screen?

18

We say WelcomeMessage is a child component of App,
and App is its parent componnet.

We're adding the <WelcomeMessage /> component like if it
was part of the HTML language.

That's the beauty of React components and JSX: we
can compose an application interface and use it like
we're writing HTML.

With some differences, as we'll see in the next section.

19

The difference between
JSX and HTML
JSX kind of looks like HTML, but it's not.

In this section I want to introduce you some of the most
important things you need to keep in mind when using
JSX.

One of the differences might be quite obvious if you
looked at the App component JSX: there's a strange
attribute called className .

In HTML we use the class attribute. It's probably the
most widely used attribute, for various reasons. One of
those reasons is CSS. The class attribute allows us to
style HTML elements easily, and CSS frameworks like
Tailwind put this attribute to the center of the CSS user
interface design process.

But there's a problem. We are writing this UI code in a
JavaScript file, and class in the JavaScript programming
language is a reserved word. This means we can't use
this reserved word as we want. It serves a specific
purpose (defining JavaScript classes) and the React
creators had to choose a different name for it.

That's how we ended up with className instead of class .

You need to remember this especially when you're
copy/pasting some existing HTML.

20
React will try its best to make sure things don't break,
but it will raise you a lot of warnings in the Developer
Tools:

This is not the only HTML feature that suffers from this
problem, but it's the most common one.

Another big difference between JSX and HTML is that
HTML is very relaxed, we can say. Even if you have an
error in the syntax, or you close the wrong tag, or you

have a mismatch, the browser will try its best to
interpret the HTML without breaking.

It's one of the core features of the Web. It is very
forgiving.

JSX is not forgiving. If you forget to close a tag, you
will have a clear error message:

21

React usually gives very good and informative

error messages that point you in the right direction
to fix the problem.

Another big difference between JSX and HTML is that
in JSX we can embed JavaScript.

Let's talk about this in the next section.

22

Embedding JavaScript in
JSX
One of the best features of React is that we can easily
embed JavaScript into JSX.

Other frontend frameworks, for example Angular and
Vue, have their own specific ways to print JavaScript
values in the template, or perform things like loops.

React is not adding new things. Instead, it lets us use
JavaScript in the JSX, by using curly brackets.

The first example of this that I will show you comes
directly from the App component we studied so far.

We import the logo SVG file using

import logo from './logo.svg'

and then in the JSX we assign this SVG file to the src

attribute of an img tag:

Let's do another example. Suppose the App

component has a variable called message :

function App() {
const message = 'Hello!'
//...
}

23
We can print this value in the JSX by adding {message} anywhere in the JSX.

Inside the curly brackets { }we can add any JavaScript statement, but just
one statement for every curly bracket block.

And the statement must return something.

For example this is a common statement you will find in JSX. We have a
ternary operator where we define a condition (message === 'Hello!'), and we
print one value if the condition is true, or another value (the content of
message in this case) if the condition is false:

{
message === 'Hello!' ? 'The message was "Hello!"' }

24

Managing state in React
Every React component can have its own state.

What do we mean by state? The state is the set of
data that is managed by the component.

Think about a form, for example. Each individual input
element of the form is responsible for managing its
state: what is written inside it.

A button is responsible for knowing if it's being clicked,
or not. If it's on focus.

A link is responsible for knowing if the mouse is
hovering it.

In React, or in any other components-based
framework/library, all our applications are based and
make heavy use of components state.

We manage state using the useState utility provided by
React. It's technically a hook (you don't need to know
the details of hooks right now, but that's what it is).

You import useState from React in this way:

import React, { useState } from 'react'

Calling useState() , you will get back a new state variable,
an a function that we can call to alter its value.

25
useState() accepts the initial value of the state item and
returns an array containing the state variable, and the
function you call to alter the state.

Example:

const [count, setCount] = useState(0)

This is important. We can't just alter the value of a
state variable directly. We must call its modifier
function. Otherwise the React component will not
update its UI to reflect the changes of the data. Calling
the modifier is the way we can tell React that the
component state has changed.

The syntax is a bit weird, right? Since useState() returns
an array we use array destructuring to access each
individual item, like this: const [count, setCount] = useState(0)

Here's a practical example:

import { useState } from 'react'

const Counter = () => {
const [count, setCount] = useState(0)

return (
<div>
<p>You clicked {count} times</p>
<button onClick={() => setCount(count + 1)}>Cl </div>
)
}

ReactDOM.render(<Counter />, document.getElementById

26
You can add as many useState() calls you want, to create
as many state variables as you want:

const [count, setCount] = useState(0)
const [anotherCounter, setAnotherCounter] = useState

27

Component Props in
React
We call props the initial values passed to a component.

We previously created a WelcomeMessage component

function WelcomeMessage() {
return <p>Welcome!</p>
}

and we used it like this:

<WelcomeMessage />

This component does not have any initial value. It does
not have props.

Props can be passed as attributes to the component in
the JSX:

<WelcomeMessage myprop={'somevalue'} />

and inside the component we receive the props as
argument:

function WelcomeMessage(props) {
return <p>Welcome!</p>
}

28
It's common to use object destructuring to get the
props by name:

function WelcomeMessage({ myprop }) {
return <p>Welcome!</p>
}

Now that we have the prop, we can use it inside the
component, for example we can print its value in the
JSX:

function WelcomeMessage({ myprop }) {
return <p>{myprop}</p>
}

Curly brackets here have various meanings. In the

case of the function argument, curly brackets are used
as part of the object destructuring syntax.

Then we use them to define the function code block,
and finally in the JSX to print the JavaScript value.

Passing props to components is a great way to pass
values around in your application.

A component either holds data (has state) or receives
data through its props.

We can also send functions as props, so a child
component can call a function in the parent
component.

A special prop is called children . That contains the value
of anything that is passed between the opening and
closing tags of the component, for example:

29
<WelcomeMessage> Here is some message </WelcomeMessa

In this case, inside WelcomeMessagewe could access the
value Here is some message by using the children prop:

function WelcomeMessage({ children }) {
return <p>{children}</p>
}

30

Data flow in a React
application
In a React application, data typically flows from a
parent component to a child component, using props
as we saw in the previous section:

<WelcomeMessage myprop={'somevalue'} />

If you pass a function to the child component, you can
however change the state of the parent component
from a child component:

const [count, setCount] = useState(0)

<Counter setCount={setCount} />

Inside the Counter component we can now grab the
setCount prop and call it to update the count state in the
parent component, when something happens:

function Counter({ setCount }) {
//...

setCount(1)

//...
}

You need to know that there are more advanced ways
to manage data, which include the Context API and
libraries like Redux, but those introduce more

31
complexity and 90% of the times using those 2 ways I
just explained are the perfect solution.

32

Handling user events in
React
React provides an easy way to manage events fired
from DOM events like clicks, form events and more.

Let's talk about click events, which are pretty simple to
digest.

You can use the onClick attribute on any JSX element:

<button
onClick={(event) => {
/* handle the event */
}}
>
Click here
</button>

When the element is clicked, the function passed to
the onClick attribute is fired.

You can define this function outside of the JSX:

const handleClickEvent = (event) => {
/* handle the event */
}

function App() {
return <button onClick={handleClickEvent}>Click he }

When the click event is fired on the button, React calls
the event handler function.

33
React supports a vast amount of types of events, like
onKeyUp , onFocus , onChange , onMouseDown , onSubmit and
many more.

34

Lifecycle events in a
React component
So far we've seen how to manage state with the
useState hook.

There's another hook I want to introduce in this book:

useEffect .

The useEffect hook allows components to have access to
the lifecycle events of a component.

When you call the hook, you pass it a function. The
function will be run by React when the component is
first rendered, and on every subsequent re
render/update.

React first updates the DOM, then calls any function
passed to useEffect() .

All without blocking the UI rendering even on blocking
code.

Here is an example:

35
const { useEffect, useState } = React

const CounterWithNameAndSideEffect = () => { const
[count, setCount] = useState(0)

useEffect(() => {
console.log(`You clicked ${count} times`) })

return (
<div>
<p>You clicked {count} times</p>
<button onClick={() => setCount(count + 1)}>Cl </div>
)
}

Since the useEffect() function is run on every
subsequent re-render/update of the component, we
can tell React to skip it, for performance purposes, by
adding a second parameter which is an array that
contains a list of state variables to watch for. React will
only re-run the side effect if one of the items in this
array changes.

useEffect(() => {
console.log(`Hi ${name} you clicked ${count} times }, [name, count])

Similarly, you can tell React to only execute the side
effect once (at mount time), by passing an empty
array:

useEffect(() => {
console.log(`Component mounted`)
}, [])

36
You migth find yourself using this option a lot.

useEffect() is great for adding logs, accessing 3rd
party APIs and much more.

37

Where to go from here
Mastering the topics explained in this book is a great
step towards your goal of learning React.

Contact Dhana Shekhar Tontanahal for real time
projects now

